orbit. The greatest height of the body (at posterior third) of the trpe specimen (.447 m . long) is .013 m ., and the height behind pectorals is .0055 m . The color is black.

N. J. No.	Station.	Latitude.	Longitude.	Fathoms.	Specimen.
33369.	2076	$\begin{array}{ccc}\circ & 1 \\ 41 & 13 & 00\end{array}$	$\begin{array}{ccc} 2 & 1 & \prime \prime \\ 63 & 33 & 30 \end{array}$	906	1

Labichthys elongatus.
D. $316 . \mathrm{A} .309+x$. (The anal is destroyed towards its end.) P. 19.

The ridges that bound the rostral groove are not confluent backwards in a cariniform extension, but end in a vertical from the orbit. The greatest height of the body (at posterior third) in the type specimen (. 54.2 m . long) is . 015 of a meter. The color is blate.

	N. M. No.	Station.	Latitude.	Longitude.		Fathoms.	Specimen.
33577		2100	$\begin{array}{ccc}\circ & 1 \\ 39 & 22 & 11\end{array}$	\circ 1 88 34		1628	1

rithe remarlable fish called Eurypharynx was one of the fruits of the explorations of the French vessel Travaillenr in 1852. A single specimen abont a foot and a half long was obtained off the coast of Moroceo at a depth of 2,300 meters (abont 1,10 fathoms), and has been partially described by M. L. Vailhant under the aame Eurypharynx pelectnoides.

Three specimens of the same general type of fishes were found by the United States Fish Commission steamer Albatross in Angust and September, 1883, and might be considered to be generically and even specifically identical with Eurypharynx pelccanoides were it not for sercral positive statements made by the describer of that species.

The problem of the relations of Eurypharnyx to other fishes has been discussed by M. Vaillant with what appears to us to be negative results and one set of conclasions necessarily contravenes another. But it is only just to M. Vaillant to let the opinions as to the affinity of the fish chmeiated by him be presentel in his own language:
"We may say that the fish presents relations with the Anacanthini, witlı certain Physostomi, such as the Scopelidæ and Stomiatidx, and also with the Apodes. While it resembles these last in the want of ventral fins and the imperfection of the opereular apparatus, it differs from them too much in its well-developed and absolntely free intermaxillaries to allow it to be placed in the same group. As regards the Scopelider and Stomiatidx, all the known gencra in those families have a very widely open branchial orifice: in the former the intermaxillary alone forms
the free border of the upper jaw ; in the latter the maxillary forms part of it: and thus it would be the Scopelide that Eurypheryn. would approach, especially as it does not present the lyoilean barbel which has hitherto been indicated as characteristic of the Stomiatidie.
"However, of all fishes it is to Malacosteus niger, Ayres, placed in the latter family by zoologists, that we are tempted to approximate the anmal here muder consideration; they alone present the simple arrangements of the suspensorium indicated above.
"But, finally, it is perhaps with the Anacanthini that its relations seem to be most real, whetiner we consider the form of the body, which greatly resembles that of Jacrurus, or the absence of rentral fins, which is nsual in certain anmals of the group; thus several Ophid ida and all the Lycodide (the latter even laving their branchial orifice reduced, although not to the degree that occurs in our animal) increase the probability attaching to this view. However, the characters of Eurypharymx are so strongly marked that in any case it is necessary to regard it as the type of a new family; and of this it would be the sole remresentative, uuless subsequent investigations show that we must muite with it the gemus Malucosters."-(Vaillant, op. cit.)

We are unable to appreciate any affinity of Gastrostomus to any Anacanthines, Physostomes, or typical Apods, nor does it seem to be at all related to Mrulacosteus, which has been miversally considered to be a little modified Stomiatid. Our own conclusions are expressed in the following arrangement.

The characters observed in the specimens collected by the Albatross may be segregated into several categories-(1) those disagrecing with structural characters exhibited by all normal Teleosts and which are paramount even to the characters usually considered to be of ordinal ralue; (${ }^{2}$) those presumably common to the western and eastern Atlantic forms and which may be regarded as of family value; and (3) the characters alleged to be peculiar to Eurypharynx on one hand and on the other confirmed as to their diserepancy in the American form. In this order we here expose the cardinal characteristies of the Eurypharymgoid fishes in adrance of a monograph in which we propose to describe and illustrate in detail their morphology, and disenss their relationship to other fishes, aud especially to the Saccopharyngids and cel like types generally.

ORDER LYOMERI.

Fishes with five branchial arches* (none modified as branchiostegal or pharyngeal) far behind the skull; an imperfectly ossified cranium, articulating with the first vertebra by a basi-occipital condyle alone; only two cephalic arches, both freely movable, (1) an anterior dentigerous one-the palatine, and (2) the suspensorial, consisting of the

[^0]hyomandibular and quadrate bones;* without maxillary bones or dis. tinct posterior bony elements to the mandible; with an imperfect seapular arch remote from the skull; and with separately ossified but imperfect vertebre. \dagger

FAMILY EURYPHARYNGIDE.

Nouvelle famille Faillant, Comptes Rendus. Acad. Sc. Paris, t. -, p. 1226, Dec. 11, 18×2 (not named).
Eurypharyngidæ Gill, Science, v. 1, p. 231, March 30, 1883.
Lyomeres with the head flat above and with a trausverse rostral margin, at the outer angles of which the eyes are exposed, with the jaws excessively elongated backwards and the upper parallel and closiug against each other as far as the artienlation of the two suspensorial bones, with minute teeth on both jaws, with a short abdomen and long attennated tail, branchial apertures nabrow aud very far behind, dorsal and aual fins continned nearly to the end of the tail, and minute pectoral fins.

The mandibular rami are exceedingly narrow and slender, but the jaws are extremely expansible and the skin is correspondingly dilatable ; consequently an enormons pouch may be developed. Inasmuch as the slenderness and fragility of the jaws and the absence of raptorial teeth (at least in Gustrostomus) prechnde the idea of the species being true fish of prey, it is probable that they may derive their food from the water which is received into the pouch, by a process of selection of the small or minute organisms therein contained.

The peenliar closure of the anterior half of the upper jaws upon each other, and the co-ordinate joint between the hyomandibular and quadrate elements of the suspensorinm are donbtless correlated with the mode of ingestion or selection of food. The skin constituting the pouch, it may be added, has a peculiar velvety appearance, and also reminds one of the pataginom or wing membrane of a bat. But a more detailed summary of the salient characteristics of the type may be justly demanded at once.

OSTEOLOGY.

The skeleton is noteworthy for its simplicity or rather fewuess of its parts, but the homologies of these parts are, for that rery reason, not evident at first sight. We necessarily confine our attention to Gustrostomus, as the parts of Eurypharynx have not yet been described or figured.

The cranium above is really pentagonal, but apparently, in the main, transcersely quadrate, expanding backwards around the foramen magmum (which is conspicuous from above) and forwards into the ethmoid expansion, which is separated from the main portion by a strangula-

* : We find neither hyoidean apparatus nor opereular pieces."-Vaillant.
t "It is important to indicate the complete absence of the swimming bladder."Vaillant.
tion; below it appears to have more of a pentagonal outline on account of the less irregularity of the surface near the contour.

The notochord is persistent in the skull for half the length of the basioceipital.

The occipital condyle is transverse and there are no lateral ones.
The basioecipital occupies nearly a third of the length of the base of the cranimm.

There is a very small supraoccipital developed as a transverse bone above the foramen magnum and protroded forward as a triangnar wedge between the parietals.

External to the exoceipital there is an opisthotic element, in front of which sneceeds a discoidal element (which is probably the proötic) with which alone the hyomandibular articulates, not coming in contact with ang other otic bones.

There are well-marked exoccipitals and alisphenoids which have more or less distinct sutural relations with adjoining bones, but their limits have not been clearly determined.

External to the parietals there is a pterotic with lateral and rentral fossa for the insertion of the strong muscles which move the jaws.

The purtsphenow is present and extends as a narrow splint from the hinder portion of the basioccipital to very near the end of the rostrum, where it widens and assumes a slightly spatulate form, resting free on the ethmoid expansion, there being no vomer developed.

The presphenoid has not been worked as to its limits anteriolly, but the fifth nerve passes out of the skull behind the alisphenoid in its nsual relative position to other parts and immediately within and in front of the discoidal ciement lodged in a fossa behind the alisphenois? and below the puterotic, and with which the styliform hyomandibular has an articmation admitting of a swinging movement, inasmuch as the pterotic itself is slightly mobile in relation to the adjacent bones.

The parietals are the best developed bones, and cover most of the hinder half of the craninm, those of the two sides being in contact from near the foramen to near the center of the roof.

In front of the parietals there are postfrontuls which form laterally the posterior border of the orbit.

The ethmoid os rostral part of the cranimm is cartilaginous or like the chondrocmainu of the tepical teleost in its histological chameters.

The orbital fossee open oblignely forwards and directly downwards, and there are no infoworbital bones.

The nasal fosser are depressed excavations in the lateral region of the cranial rostrum, partly rooted over above and fiom behind by horzontaliy projecting cartilaginous ridges; they open obliquely forwands and ontwards within a very short distance of the upper side of the end of the shout.

The foramen for the passage of the ninth and tenth nerves opens alongside the basioccipital aud perforates the exoceipital.

There is mo romer developed, but a triangular eartilaginons element pendent fiom the eranial rostrum affords attachment for the palatine element anteriorly; this element is inclined obliquely downwards and backwards and is joined to the rostrmm by its anterior border.

The articulter condyle for the suspensorimm, as already indicated, is a discoidal cartilaginous element (resting in a fossa under the lateral expansion of the cranimm); it has a papilliform eminence in the center, Which fits into a conical depression in the head of the slender hyomandibular bone: the hyomandibular, and especially the quadrate, are excessively elongated and articulate by an intermediary eylindroidal cartilaginoms boud, which reminds one of the intervertebral disks seen in the spinal colmm of mammals; this cartilage is ensheathed behind by a splint-like prolongation of the quadrate, which is prolonged aud attenuated on the surface of the hyomantibular; the distal end of the quadrate is grooved longitudinally, forming, with the artieular end of the mandible, a complete ginglymus joint.

The vertebre are very momerons, and at the same time verysimple and little differentiated from each other.

The vertebral centra are anumar, and eonstricted in the middle like a dice-box, and the eavity of each vertebra is filled with racnolated tissue, the remains of the chorda; the centra are comected together by cartilagimons ammar ligaments.

The newropophyses are slender, diverging (instead of convergent), carrtilaginous distally, and embracing the nemal sheaths on the sides, while by the nemapophyses is supported a membranous sheath which roofs orer the nervons chord, and around which there is a wiele serons space which extends into the cranim, expanding so that the serous space around the brain is as capacions relatively as, or more so than, in Elas. mobranchs.

Hamapophyses are represented by parallel plates on the ventral fice of the centra, and these plates are broadest at the ends of the vertebrex.

The first rertebra is shorter than those which follow, and the eamdal vertebre are simpler than those of the body and prebranchial region; at the extreme tip of the tail there are possibly no vertebre differentiated, the skeletal axis of the body being represented by the notochond and its sheath.

The interspinous basalia of the median fin rays are composed of two pieces, one proximal, the other distal, with the articular extremities represented by cartilage.

The median fin rays at their base have eartilaginous articular portions mesially divided, the halves continued distally into the lateral halres of the unsegmented rays. The mednlla or axial portion of the rags is not cartilaginous.

There is an eradiate rentral fold of ectoblast, as in embryo fishes. No dorsal or anal rays exist for some distmee from the end of the tail. (These last are features which would indicate a defective development of the extreme candal end of the bony skeletal axis of the body.)

BRANCHIAL STSTEM.

The branchial apparatus has five very short arches and six refefts, the arches leing fringed with a donble row of lamellax, with cartilaginous axial supporting filaments. The rery short branchial arches seem to have been backwardly displaced, and the clefts open downward instearl of laterally. The elefts lie in a pair of anteriorly divergent furmws in the floor of the pharynx. The skeletal elements of the branchial apparatus are probably in large part cartilaginons and imperfectly developed. The branchie are covered by a soft integumentary fold, in which there are no apparent traces of branchiosteges.

MIOLOGY.

The muscular apparatus which actuates the jaws and hyomandibular suspensor in Gastrostomus presents one very remarkable feature in that its cross-section apparently excecds that of the dorso-rentral lateral muscular masses of the nape. These muscles operate (1) the mandible and (2) the hyomandibular and quadrate.

The mandible is extended by a powerful extensor muscle, lying behind and external to the hyomandibular. (Its belly, in our largest specimen, is about as long as that of the hyomandibnlar-about . 035^{m}, and its filiform tendon is partially ossified, and measures $.065^{\mathrm{m}}$ in length, thus together constituting a total length of $.10^{\mathrm{m}}$.) Its origin is in the lateral cranial fossee in the pterotie, and its insertion into the angular portion of the mandible, which is turned upward and backward over the distal end of the quadrate, like the olecranon of man. This muscle may be called the extensor of the mandible, and is practically placed posteriorly to the suspensor.

The other principal muscle originates anteriorly, externally and internally to the articulation of the mandibular suspensor, which depends obliquely backwards from the skull, and its belly is about $.05^{\mathrm{m}}$ long and eight times the bulk of the mandibular extensor. Part of it passes down between the palatine and the suspensor internally, and its internal belly is prominent within the mouth, while its external belly is strongly marked from without, behind and below the eyes, immediately behind which its anterior origin from the skull begins. The dentigerous palatine is really anterior to it, but closely apposed, while a furrow in the posterior side of its belly receives the upper half of the suspensorium. Its origin largely covers the postorbital portion of the rentral face of the cramimm nearly as far back as the basisphenoid and from the external vential margin of the skull behind the eye to near the middle line. Its insertion seems to be partly into the angular portion of the mandible in front of its articulation with the quadrate and partly into the quadrate itself. Its function is to close the mandible and to divaricate and approximate the greatly elongated suspensor, which itself has a cartilaginous joint near its upper third, and enjors a special mobility in virtue of its peculiar articulation with the cranimm.

SPLANCHNOLOGY.

The viscera are arranged in the abdominal carity in a somewhat peculiar manner in that the black pigmented layer of the mouth and throat is continned back over a blind, saccular polongation of the walls of the pharynx and œesophagus, the latter being so greatly widened as to scarcely be evident, except as defined by its relative position with respect to the branchiæ. This peculiar arrangement has given an mexpected significance to the generic name which we have proposed: While there is no rery evident eesophageal constriction, i oth it and the pharyngeal part of the alimentary tract are very short, owing to the great reduction of the branchial apparatus.
The thin membranous parietes of the mouth and throat are thrown into numerous longitudinal, approximated, parallel folds, in harmony with the fact that the throat and mouth are very distensible. This wrinkling of the parietes of the pharyngeal region is apparent above the gills, which evidently open internally in the ventral part of the phargux.

A darkly pigmented ceecal prolongation of the throat begins just above and behind the gills, and is lined with a thick deeply plicated secretory epithelimm, the whole sack extending as far back as the first half of the body cavity; at the anterior lateral portion of this pigmented sack the widest, thick-walled part of the intestine arises on the right side and extends backward under the dark-walled ceeal ponch along the middhe line between the thick and symmetrically disposed liver, which lies against either side of both the dark pouch and the first portion of the intentine, and extends for about half the length of the abdominal cavity. Behind the liver the intestine becomes suddenly narrower, and has two flexures, hut is not very sharply bent upou itself.

The pigmented cecal part of the alimentary tract seems to be the stomach, from which it is probable that the food is passed after partial digestion to the thick-walled anterior portion of the intestine proper, lying just below it and opening into it at its anterior part.

The mode in which the food is collected is probably as suggested before, namely, by filling the month with water containing suall organisms which are retained and left in the pharynx above the gills as the water is strained throngh the latter. The wrinkles in the oral and pharyngeal integument would indicate that the latter probably contains seattered muscular fibers and is itself contractile.
The abdominal cavity is separated from the cardiac by a septum, in front of which there is a well-developed heart of the usual type with an atrial sinus, ventricle, and bulbus aorte. The heart lies in a very thick-walled pericardial sac.

No air-bladder or rudiment of such a structure has been discovered in our specimens.
The renal organs lie in the hinder part of the abdominal cavity, ex-
tending for half its length as a thick agglomerated mass of neplric tubules extermal to the peritonemm.

Fehind the liver, in the female, the ovary is developed on either side of the mesentery for lalf the length of the borly cavity. It is composed of series of free slightly plicated lobes which depend into the abdomimal cavity on either side of the intestine. No peritoneal funicembraces the ovarian organ, and there is no oviduct, the ova escaping from the body lyy way of a conspienous pore immediately behind the bent.

The following facts in regard to the genesis of the ora have been made out: The ora probably drop from the naked ovigerons lamellæ, as they rupture their follieles, into the abdominal cavity. In onr specimen the ova were found to be immature, but were probably within a conple of weeks of the mature state, judging from their large size (.0007 meter, in diameter), so that the animal probably spawns in the autumn. No very immature or very young ora were noticed in the ovarian stroma, which would indicate that the spawning season was near at hand. (The specimen was obtaned September 3d.)

There is probably present in the eggs when they are full grown oil, which appears to be superficially embedded in the vitellns in the ovaritn eggs which were examined. The proof that the ova sturli d by us were immature consists in the fact that there still seemed to be present a nuclear body in the center of the vitellus when the eggs were stained with safranin aud the superfluons color abstracted with alcohol.

What now are the deductions to be derived as to the systematic relations of the Eurypharyngids? We cannot agree with II. Vaillant that ther lave any relations with the Auacanthini, with certain Physostomi, such as the Scopelidx and Stomiatidx, and also with the Apodes, nor that they are at all approximated to the genns Malacosteus. On the contrary, in our opinion, there are few fishes more removed from them than the Anacanthines, and the Scopelids and Stomiatids (including Malacosteus) are also extremely divergent. It is true that the latter exhibit an analogons extension of the oral fissure, but the little value of that character is evident from the gradation of the wide-monthed forms of their series into those having normally cleft ones. Furthermore, the extension of the peristomal elements has been attained by entirely different methods in the two types. In the Scopelids and Stomiatids, the upper jaw is constituted by the hypertrophied intermaxillaries or supmamaxillaries, and the palatines are conversely reduced, while in the Eurypharyngids the upper arcade of the month is constituted solely by the liberated and excessirely elongated palatine bones, and the maxillaries are entirely wanting.

It is then with the true Apodal fishes that the Eurypharyngids may be most aptly compared. In that series we find a gradation from those forms exhibiting nearly the trpical Teleostean type of structure to those in which the palatine bones alone form the superior arch of the mouth
and other elements are atrophied or entirely absent. The Mnremids* are those forms exhibiting the greatest degree of degradation of the cephalic arches. But it is by no means certain yet that the Eurypharyngids are derived from the same primitive stock as the Murenids. On the contrary, the evidence thus far furnished by our anatomical inrestigations lead us to beliere that they are the offshoots of a primitive phylum cognate with the specialized Aporles, but far back in the phyletic history of those diversiform (or rather diversistructural) fishes. The common characters are rather the results of teleological modification resulting from analogons conditions, or rather conditions entailing analogons structures, than of common origin. For the present, therefore, we propose to isolate the Eurypharyngids as the representatives of a distinct order and to place that order next to the Apodes. As an ordinal name we propose Lyomeri, \dagger by which we intend to point at the loose comection of the palatine and suspensorial elements and the isolation of the branchial and seapular arches from the cranium.

Whether any of the other known types of fishes belong to this order is very doubtful, and, in fact, we have sufficient data respecting them to be tolerably certain that none do, unless it may be the Saccopharynx flagellum. Succopharynx is a very peculiar type, the representative of quite an isolated family, but its structure is almost unknown. The last systematic writer who has referred to its characters (Dr. Giinther) has deseribed the genus as consisting of "deep-sea congers, with the mascularsystem very feebly developed, with the bones very thin, soft, and wanting in organic matter; houd and gape enormous"; "maxillary aud mandibulary bones very thin, slender, archerl, armed with one or two series of long, slender, widely set tecth, their points being directed inwards," \&c. \ddagger Dr. Grïnther's "maxillary" bones are doubtless palatines, and his description is very deficient in precision, but supplemented as it is by the descriptions of Mitchill and Harwood, it is evident that the genns Saccopharynx, or family Saceopharyngide, is quite remote from the Eurypharyngida. More than this can only be surmised at most till its structural characteristics are determined.
The question minst hereafter arise whether the fishes examined by M. Vaillant and ourselves are the same or really distinct generie trpes. Little value is to be attached to the relative extension (within the limits observed) of the jaws, but the proportions of the cranimen (if confirmed) would indicate that the two forms exhibit marked differences, and our respect for the eminent French naturalist will not permit us to

[^1]assume error on his part in reference thereto, and, consequently, we propose (provisionally at least) to differentiate the two forms as follows:

EURYPHARYNX.

Eurypharynx Vaillant. Comptes Rendus Acad. Sc. Paris, t. -, p. 1232, Dec. 11, 1882 (tr. Aun. © Mag. Nat. Hist. (5), v. 11, p. 6í).
Eurypharyngids with the eranium prolonged backwards, the dentigerous bones little more than three times as long as the cranium;* "faint dentary granulations" on both jaws, and at the extremity of the mandible "two hooked teetl"; \dagger and the tail terminating in a point.

EURYPHARYNX PELECANOIDES.

Eurypharynx pelecanoides Vaillant.

GASTROSTOMUS.

Gastrostomus Gill \& Ryder.
Eurypharyngids with the cranium abbreviated and little or no longer than broad, the dentigerous bones almost seven times as long as the cranium; minute acute conic tecth depressed inwards in a very narrow band on the jaws (no enlarged teeth at the extremity of the mandible), and the tail with an eradiate membrane under its terminal portion.

GASTROSTOMUS BAIRDII.

Gastrostomus bairdii Gill \& Ryder.

The cranium forms about one-thirtieth or less of the extreme length, and is as broad as long; the jaws are excessively elongated, being nearly (in large) or more (in joung) than seven times longer than the cranium; there are about 160 rays in the dorsal fin and about 107 in the anal; the pectorals are rery small, being ouly about as long as the diameter of the eye, and little more than twice as long as wide at the base, and hare about nine simple rays. The rays of the unpaired fins are quite flexible in the small individuals, but quite rigid and more perfectly ossified in the larger; they become obsolete toward the end of the tail. The rays, which are rigid and well ossified anteriorls, become shorter,

[^2]
very slender, and flexible-in fact almost as limp as threads near the end of the tail. The vertebral bodies become longer and more attennated toward the end of the tail.

Metre
Extreine length 47
liody:
Height at branchial region 035
Height at anus 025
Height at commencement of anal fin 02
Length of abdominal cavity 05
Cravium:
Length 015
Width 015
Interorbital area 011
Orbit, diameter $00: 3$
Jaw :
Upper, length 103
Lower, length 103
Suspensorium, length 102
Branchial aperture:
From snout 11
From dorsal 028
Interbranchial isthmus, width 0035
Dorsal:
From snout 07
Longest ray 0075
Anal:
From snont 175
Longest ray 015
Pectoral:
Distance from branchial aperture 002
Distance from anus. 04
Distance from snout 115
Length 0035
Width (at base) 0015
The rertebre of Gastrostomus Bairdii, as observed in the mutilated medium-sized specimen, are as follows:Total number?97
(The last two or three candal are not distinguishable by dissection.)
Nimber intervening between craninm and branchiæ 16
Number between branehia and vent 6
Nunber in tail 75
Vertebral formula (approximately) $22+75$ 97

The three specimens of this species secured were found at different times and in quite different depths of water, as will be seen from the following exhibit:

	N. M. Nos.	Station.	Latitude.			Longitade.			Fathoms.
				1			,		
33204.		2047	40						389
33:05.		2043	39	49	00		28	30	1,467
33386.		2074		43		65	15		1,309

The proportions of the three specimens of Gastrostomus essentially agree as to those points for which measurements have been given by M. Vaillant, and their ratios and the descrepancy therefrom of the type of Eurypharynx may be judged from the following table:

	E.	G. 1.	G. 2.	G. 3.
Extreme length	. 47	. 47	. 235	. 149
Cranium:				
Length	. 03	. 015	. 0075	. 0045
Width		. 015	. 0075	. 0045
Suspensorium, length	. 095	. 102	. 053	. 0335

There is no d priori improbability of the existence of two or eren many generic modifications of the Lyomerons type, and differences like those represented by the preceding diagnoses are such as might naturally be expected.

ORNITHOLOGICAL, NOTESON COLLECTIONS MADE IN JAPAN FROMI JUNE TO DECEMEBEIE, 1S52.

By PIERRE LOULS JOUY.

INTRODUCTION.

Accompanied by Mr. A. J. M. Smith, I left Yokohama on the morning of the $23 d$ of June, 185*, for an ornithological trip to Fuji-yama. This, the highest mountain in Japan, is a favorite breeding-gronnd for many species of birds, both migratory and resident; centrally situated and having an altitude of over 12,000 feet above the sea level, it affords every favorable condition of environment.

Traveling by the ordinary hand-carriage, or kuruma, we accomplished about 35 miles of our journey, which was as far as the condition of the roads would allow. We then walked on to Tonozawa, a small place where we had a bath heated by a natural spring, and also secured very good accommodations for the night.

From Tonozawa to Ashinoyu, by mountain paths, throngh sereral small villages, oceupied the next day. Sulphur springs of varying temperature, from 85° Fah. to boiling point, abound in these lills, and are utilized largely for bathing purposes. The water is conducted by means of bamboo pipes to the houses and public bathing places, and in many of the towns hot and cold water flow side by side through the principal street.

Here, as in Switzerland, the people are mainly engaged in cabinet work, turning and carving; many grotesque objects are made out of the roots of trees. Although mills run by water-power abound, yet they Proc. Nat. Mus. $83-18$

[^0]: *" We find six pairs of interior branchial clefts, and consequently five branchie" in Euryphargux. -Vaillant.

[^1]: * We mulerstand by the term " Inranids" the natural family represented by Murana and closely related genera only, and not the heterogenons medles called the "fanily Murenida" hy Dr. Giinther. See Cope's memoir in Trans. Am. Phil. Soe., r. 14, p. 456; Gill's "Arrangement of the families of Fishes," 1 . 20 , and dordan \& Gilbert's "Synopsis of the Fishes of North America," 1. 355.
 \dagger Avos, loose, and $\mu \varepsilon \rho \circ s$, part or segment.
 \ddagger Giunther (Albert C. L. G.) : An Introduction to the Study of Fishes, 1Ee0, p. 670.

[^2]: * " This animal, about 0.47 metre long and 0.02 metro high at tho most elcvated part, is of an iutense deep black color. The body, the form of which is masked in front by the abnormal month, which will be mentioned further on, resembles that of Macrurus; it becomes regularly attemated from about the anterior fourth, the point at which the external branchial orifice is secn, and terminates in a point at the candal extremity; the anus is situated at the junction of the anterior third with the posterior two-thirds of the body.
 "What gives this fish a very peculiar physiognomy is the arrangement of the jaws and the structure of the mouth, which are even an exaggeration of what Mr. Ayres has described in Malacosteus niger. Although the head is short, scarcely 0.03 metre, the jaus and the suspensorium are excessively clongated; the latter did not measure iess than 0.095 metre ; and from this it results that the articular angle is carricd very far back, to a distance from the end of the muzzle equal to about three and a half times the length of the cephalic portion."
 +"On both jaws one can feel faint dentary granulations; at the extremity of the mandible there are two hooked teeth 0.002 metre long."

